Action at hooked or twisted-hooked DNA juxtapositions rationalizes unlinking preference of type-2 topoisomerases.
نویسندگان
چکیده
The mathematical basis of the hypothesis that type-2 topoisomerases recognize and act at specific DNA juxtapositions has been investigated by coarse-grained lattice polymer models, showing that selective segment passages at hooked juxtapositions can result in dramatic reductions in catenane and knot populations. The lattice modeling approach is here extended to account for the narrowing of variance of linking number (Lk) of DNA circles by type-2 topoisomerases. In general, the steady-state variance of Lk resulting from selective segment passages at a specific juxtaposition geometry j is inversely proportional to the average linking number, Lk(j), of circles with the given juxtaposition. Based on this formulation, we demonstrate that selective segment passages at hooked juxtapositions reduce the variance of Lk. The dependence of this effect on model DNA circle size is remarkably similar to that observed experimentally for type-2 topoisomerases, which appear to be less capable in narrowing Lk variance for small DNA circles than for larger DNA circles. This behavior is rationalized by a substantial cancellation of writhe in small circles with hook-like juxtapositions. During our simulations, we uncovered a twisted variation of the hooked juxtaposition that has an even more dramatic effect on Lk variance narrowing than the hooked juxtaposition. For an extended set of juxtapositions, we detected a significant correlation between the Lk narrowing potential and the logarithmic decatenating and unknotting potentials for a given juxtaposition, a trend reminiscent of scaling relations observed with experimental measurements on type-2 topoisomerases from a variety of organisms. The consistent agreement between theory and experiment argues for type-2 topoisomerase action at hooked or twisted-hooked DNA juxtapositions.
منابع مشابه
Consistent Rationalization of Topo II Actions
The mathematical basis of the hypothesis that type-2 topoisomerases (topo II) recognize and act at specific DNA juxtapositions was investigated by coarse-grained lattice and continuum wormlike chain models, showing that selective segment passages at hooked juxtapositions can result in dramatic reductions in catenane and knot populations. The lattice modeling approach has recently been extended ...
متن کاملTopological information embodied in local juxtaposition geometry provides a statistical mechanical basis for unknotting by type-2 DNA topoisomerases.
Topoisomerases may unknot by recognizing specific DNA juxtapositions. The physical basis of this hypothesis is investigated by considering single-loop conformations in a coarse-grained polymer model. We determine the statistical relationship between the local geometry of a juxtaposition of two chain segments and whether the loop is knotted globally, and ascertain how the knot/unknot topology is...
متن کاملLocal site preference rationalizes disentangling by DNA topoisomerases.
To rationalize the disentangling action of type II topoisomerases, an improved wormlike DNA model was used to delineate the degree of unknotting and decatenating achievable by selective segment passage at specific juxtaposition geometries and to determine how these activities were affected by DNA circle size and solution ionic strength. We found that segment passage at hooked geometries can red...
متن کاملConsistent rationalization of type-2 topoisomerases' unknotting, decatenating, supercoil-relaxing actions and their scaling relation.
How type-2 topoisomerases discern global topology from local properties of DNA is not known precisely but the hypothesis that the enzymes selectively pass double-helix strands at hook-like juxtapositions is promising. Building upon an investigation of unknotting and decatenating using an improved wormlike DNA model, here we focus primarily on the enzymes' action in narrowing the distribution of...
متن کاملInferring global topology from local juxtaposition geometry: interlinking polymer rings and ramifications for topoisomerase action.
Lattice modeling is applied to investigate how the configurations of local chain juxtapositions may provide information about whether two ring polymers (loops) are topologically linked globally. Given a particular juxtaposition, the conditional probability that the loops are linked is determined by exact enumeration and extensive Monte Carlo sampling of conformations satisfying excluded volume ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of molecular biology
دوره 400 5 شماره
صفحات -
تاریخ انتشار 2010